Cartan Subgroups and Generosity in SL2(Qp)

نویسنده

  • Benjamin Druart
چکیده

We show that there exist a finite number of Cartan subgroups up to conjugacy in SL2(Qp) and we describe all of them. We show that the Cartan subgroup consisting of all diagonal matrices is generous and it is the only one up to conjugacy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Note on the Symplectic Structure on the Space of G-monopoles

1.1. Let G be a semisimple complex Lie group with the Cartan datum (I, ·) and the root datum (Y,X, . . . ). Let H ⊂ B = B+,B− ⊂ G be a Cartan subgroup and a pair of opposite Borel subgroups respectively. Let X = G/B be the flag manifold of G. Let C = P ∋ ∞ be the projective line. Let α = ∑ i∈I aii ∈ N[I] ⊂ H2(X,Z). The moduli space of G-monopoles of topological charge α (see e.g. [4]) is natura...

متن کامل

Adele groups , p - adic groups , solenoids

1. Hensel’s lemma 2. Metric definition of p-adic integers Zp and p-adic rationals Qp 3. Elementary/clumsy definitions of adeles A and ideles J 4. Uniqueness of objects characterized by mapping properties 5. Existence of limits 6. Zp and Ẑ as limits 7. Qp and A as colimits 8. Abelian solenoids (R×Qp)/Z[1/p] and A/Q 9. Non-abelian solenoids and SL2(Q)\SL2(A) Although we will also give the more ty...

متن کامل

Cartan subgroups of groups denable in o-minimal structures

We prove that groups definable in o-minimal structures have Cartan subgroups, and only finitely many conjugacy classes of such subgroups. We also delineate with precision how these subgroups cover the ambient group.

متن کامل

Cartan subgroups of groups definable in o-minimal structures

We prove that groups definable in o-minimal structures have Cartan subgroups, and only finitely many conjugacy classes of such subgroups. We also delineate with precision how these subgroups cover the ambient group.

متن کامل

Explicit Growth and Expansion for Sl2

We give explicit versions of Helfgott’s Growth Theorem for SL2, as well as of the Bourgain-Gamburd argument for expansion of Cayley graphs modulo primes of subgroups of SL2(Z) which are Zariski-dense in SL2.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013